

Making Sense of the Variability of Coastal Ocean Acidification:

Potential Long-Term Impacts on the Oyster Aquaculture Industry

Measuring "Ocean Acidification" Inorganic Carbon

Aragonite saturation value (actually needed)

CO2 (g) + H2O \Leftrightarrow H2CO3 H2CO3 \Leftrightarrow H+ + HCO3 -HCO3 - \Leftrightarrow H+ + CO3 2-Ca2+ + CO3 2- \Leftrightarrow CaCO3(s) (calcite or aragonite)

Measuring "Ocean Acidification" Four Parameters

- ► Four parameters Any two parameters can define carbonate speciation
 - ► pH
 - measure of hydrogen ion concentration
 - Total Alkalinity (AT)
 - the excess of bases (proton acceptors) over acids (proton donors) in solution
 - ► Total CO2 (TCO2)
 - measure of carbon dioxide which exists in several states
 - ▶ pCO2
 - the partial pressure of carbon dioxide, a measure of the relative concentration of the gas in air or in a fluid

Measuring "Ocean Acidification"

Aragonite vs Calcite

 $\Omega = [Ca2+][CO3 2-]/Ksp'$

 Ω > 1, supersaturated Ω < undersaturated

 Ω < 2 can inhibit growth

Measuring "Ocean Acidification" CO2 Sys

Lewis and Wallace, 1998; Pierrot et al., 2006

Variability on coastal pH and pCO2

Variability on coastal pH and pCO2

Variability on coastal pH and pCO2

Diurnal variability

► Lower pH at night by 0.3

Less well-buffered

- Respiration
 - ► Phytoplankton blooms
- **Storms**
 - ► Freshwater input
 - Deep mixing
- Coastal Upwelling and other physical processes
 - Stratification (isolated water masses)

Three examples of damage to oyster larvae from ocean water acidity and low available carbonate, compared with healthy larvae on left. Micrograph by OSU Day 1 0.1 mm Day 2 Oregon State College of Earth, Ocean, and Atmenyberic Sciences

Clark and Gobbler, 2016).

Salisbury et al., 2009; Hunt et al., 2014; Gledhill et al., 2015; Salisbury et al., 2015; Kaspenberg and Hofmann, 2016

Impacts on Oysters

- ► Low pH yields low aragonite saturation
 - ► Inhibit shell development
 - Delay metamorphosis
 - ► Slow growth
 - ► Kill shellfish
- Multiple stressors
 - ► pH
 - ▶ Temperature
 - ► Food
 - ► Pollution

Impacts on Oysters

- ► Hatcheries treat water
 - Understanding drivers will help mangers decide on timing
- ► Timing in upwellers
- ► Moved from upwellers to mesh bags
- ▶ Remove oysters in the winter

http://blog.massoyster.org/

Approach Specifications

- Instrument mounted on fixed pier
- Grid powered
- Pumped system flow through
- ▶ pH and pCO₂ (SAMI-pH and SuperCO2 from Sunburst Sensors)
- ► Additional Temp, Salinity, CDOM, turbidity, Chl.
- Redundant local data storage
- ▶ 3G Cellular telemetry
- ▶ 10' Interval measurements
- ▶ Daily calibration with CO₂ standards (200, 300, 400, 1000ppm)

Approach Design Advantages

- ▶ pH: Colorimetric reagent method (SAMI-pH, Sunburst Sensors)
 - ► No drift
 - ▶ No calibration needed (no downtime)
- **p**CO₂:
 - ► Robust embedded LiCOR CO2 analyzer
 - ► Reliable dual showerhead equilibrator
- ► Flow-through
 - ► Easier to control biofouling and maintain
 - ► Modular (easy to add more sensors)

Approach Design Advantages

- Dock mounted and grid powered w/ Cellular telemetry
 - ► Reliable platform with ease of access
 - ► High data collection rate
- Multi-tiered data storage
 - ▶ Up to 6 months of local storage at 10' data collection
 - Dedicated RDMS server at UMB
 - Proposed data share on NERACOOS portal
- Climate controlled sealed enclosure
 - Ready for year-round use
 - Unobtrusive marine deck box

System

System

System

Refinements/adaptations to the site

Challenges

- Constant flow with 12ft tides
- What happens on exceptionally low tides
- Dock can get significant splash over during storms
- ► Floating pump for constant-depth sampling
- Icing control
- ► From prototype to production with 1 iteration
- ► Limited budget

Budget

ltem	Cost
pCO2 sensor	26000
pH sensor	12000
Pump	2000
Thermosalinograp h	6000
infrastructure	6000
CO2 gas standards	3000
pH standards	3000
Power	1000
Cell	1500
Maintenance	5000
Desecrate Sampling and	
Analysis	5000
Build Labor	25000
Research	10000

Project Timeline

Summary/Conclusions

- Proven pH and pCO2 sensors
- ► Integrated design in robust dock-side package
- Low-cost maintenance
- ► Integrates with additional sensors
- Provide data in near real-time
- Integrates with NERACOOS data portal
- Scheduled visits to the system to collect discrete samples to groundtruth the data

Thank you!

And Questions?